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It is widely accepted that the statistical properties of energy level spectra provide an essential characteriza-
tion of quantum chaos. Indeed, the spectral fluctuations of many different systems like quantum billiards,
atoms, or atomic nuclei have been studied. However, noninteracting many-body systems have received little
attention, since it is assumed that they must exhibit Poisson-like fluctuations. Apart from a heuristic argument
of Bloch, there are neither systematic numerical calculations nor a rigorous derivation of this fact. Here we
present a rigorous study of the spectral fluctuations of noninteracting identical particles moving freely in a
mean field emphasizing the evolution with the number of particles N as well as with the energy. Our results are
conclusive. For N�2 the spectra of these systems exhibit Poisson fluctuations provided that we consider
sufficiently high excitation energies. Nevertheless, when the mean field is chaotic there exists a critical energy
scale Lc; beyond this scale, the fluctuations deviate from the Poisson statistics as a reminiscence of the
statistical properties of the mean field.
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I. INTRODUCTION

Although the concept of quantum chaos �1� has no unique
precise definition as yet, it is well known that there is a
relationship between energy level fluctuation properties of a
quantum system and the dynamics of its classical analog.
Classically integrable systems give rise to uncorrelated adja-
cent energy levels that are well described by Poisson statis-
tics �2�. In contrast, spectral fluctuations of a quantum sys-
tem whose classical limit is fully chaotic �ergodic� show a
strong repulsion between energy levels and follow the pre-
dictions of random matrix theory �RMT� �3,4�. Moreover,
quantum systems without classical limit are, in practice, as-
sumed to be chaotic when their fluctuations coincide with
RMT predictions.

In this work we analyze the energy spectral fluctuations of
N noninteracting identical particles �NIPs� moving freely in a
mean field �MF�. This subject has received little attention in
the scientific literature since in 1969 Bloch argued that the
spectra of noninteracting nucleons always display Poisson
fluctuations, even if the MF is chaotic �5�. Because of its
simplicity, Bloch’s argument is valid for noninteracting fer-
mion �NIF� systems as well as for noninteracting boson
�NIB� systems. Moreover, in many-body �MB� systems the
symmetries very often lead to a regular MF; this is the case
of Galilean invariance in atoms or atomic nuclei. For this
reason, quantum chaos investigation in MB systems has very
often focused on different aspects of the transition from a
regular single-particle Hamiltonian to a chaotic Hamiltonian
with two-body �or, in more general cases, few-body� interac-
tions �6�. Semiclassical theory has also been used to study
MB systems. In spite of the problems raised by the symme-
trization postulate and the existence of continuous symme-
tries �periodic orbits of the full phase space occur in continu-
ous families�, the periodic-orbit theory can be adapted to
study these types of systems �7,8�. Although there have been
a few interesting applications to few-body Coulomb systems

�9� and to noninteracting particles �10�, most effort has gone
into developing semiclassical descriptions of the single-
particle �SP� dynamics in an appropriate MF.

Bloch’s original argument states that two successive en-
ergy levels of the many-body spectrum, En and En+1, are
sums of energies of very different parts of the SP spectrum
and therefore their variations will not be correlated. Clearly,
the argument is qualitative and to some extent vague; it does
not precise whether NIP systems always follow the Poisson
statistics or if certain conditions must be fulfilled. Bloch’s
argument seems to be plausible for a large number of par-
ticles and especially at high excitation energy. However, in
the low-energy domain of the MB spectrum the levels are
sums of energies pertaining to a small interval of the SP
spectrum, and therefore is not clear to what extent we can
consider them as uncorrelated. To the best of our knowledge,
there are no systematic analytical or numerical calculation
trying to address these questions. This is, perhaps, the reason
why there is some controversy about the validity of the ar-
gument when the number of particles is small: some authors
consider Bloch’s argument valid already for N�2 �see, for
instance, Ref. �11��, some others assume that is valid when
N�1 �12�, and others claim that it may be to some extent
true when N=2 �13�. None of them consider the dependence
of the spectral fluctuations of the MB spectrum on the en-
ergy.

Very often, the spectral fluctuations of MB systems are
studied by means of random Hamiltonians with k-body inter-
actions defined in finite spaces. Given a set of m SP states,
the Hamiltonians are written within the framework of second
quantization, and then propagated to the N-particle Hilbert
space by using the direct-product structure of these spaces
�6�. When k�N numerical simulations are the rule, but a few
analytical results are known in the so called dilute limit,
which corresponds to �N ,m�→�, N /m→0 �14�. In this con-
text, using the binary correlation method it has been recently
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claimed that spectral fluctuations become Poissonian when
k�N �13�. This could be considered as an analytical proof of
Bloch’s qualitative argument for N�1. Unfortunately, it
seems that this result is incorrect; the binary correlation ap-
proximation is not appropriate even in the simplest case �k
=1�, since it involves formal manipulations of divergent se-
ries �12�.

All these antecedents suggest that there is a common in-
tuition about what should happen with fluctuations in nonin-
teracting particle systems. However, there is neither agree-
ment about the validity of Bloch’s argument for small
number of particles or low energies, nor systematic numeri-
cal or analytical studies to address these questions.

The main purpose of this work is to study the evolution of
the spectral fluctuations of NIP systems with the number of
particles and the excitation energy. We tackle the problem by
performing a rigorous numerical study where there are infi-
nite SP energy levels accessible to each particle. This is an
advantage of noninteracting particle systems, which allows
us to deal with infinite spaces in contrast to interacting sys-
tems where finite spaces must be used.

The paper is organized as follows. Section II describes the
Hamiltonian and the MB spectrum of noninteracting particle
systems. We explain in Sec. III how the statistical analysis is
performed; we introduce the basic statistics and stress the
relevance of the unfolding procedure. Here, the derivation of
the MB level density is outlined in detail. The main results
are presented and discussed in Secs. IV and V. The former,
devoted to fermion systems, is divided in two parts, where
we study the evolution of the spectral fluctuations with the
number of particles and with the excitation energy. The re-
sults obtained for boson systems are displayed in Sec. V.
Section VI outlines an analytical calculation for N=2 sys-
tems. The last section �Sec. VII� contains a brief summary
and quotes the main conclusions. Finally, the Appendix treats
some secondary mathematical details of the integrals appear-
ing in Sec. VI.

II. THE MODEL

To be specific, consider N noninteracting identical par-

ticles moving freely in a certain MF ĥ. For simplicity, we
shall consider spinless particles, and thus the �one-body�
Hamiltonian of the system is given by

Ĥ = �
i=1

N

ĥ�pi,qi� = �
i=1

N � pi
2

2�
+ V̂�qi�� , �1�

where �pi ,qi� are the dynamical variables of the ith particle
with mass �. The Hamiltonian can also be written in terms
of the eigenvalues and eigenstates �ei , 	i
 	 i�N� of the SP

Hamiltonian ĥ�pi ,qi� as

Ĥ = �
i�N

ei	i
�i	 , �2�

where the number of SP levels accessible to each particle is
infinite. Below we explain how to obtain exact and complete
sequences of the actual MB level spectrum with the desired

length. We would like to stress that this procedure is com-
pletely different from performing the calculations in a finite
space and taking the limit m→� at the end.

The energy levels of the MB system can be calculated as

EI = �
ij�I

eij
, �3�

where I= �i1� i2� ¯ � iN� is the ordered sequence of SP
states occupied in the �anti�symmetrized state 	I
, defined as

	I
 = CIÛ	i1
 � 	i2
 � ¯ � 	iN
 , �4�

where � stands for the direct product, CI is a state-dependent
normalization coefficient, different for fermions and bosons,

and Û is the so called �anti�symmetrizer. Their expressions
are

CI = 
1 for fermions,

1

�� nj!
for bosons, � �5�

where nj is the number of times that the index j appears in I.
On the other hand

Û =
1

�N!
�
P

	tpP̂ . �6�

Here, �P runs over all the permutations of N symbols, 	
=−1 �+1� for fermions �bosons�, tp is the number of basic

transpositions associated with permutation P, and P̂ is the
permutation operator. For many-fermion systems, the anti-
symmetrizer guarantees that only configurations with N dif-
ferent SP levels contribute.

Before proceeding further, it is worth making several re-
marks.

�i� In practice, one cannot deal with the infinite SP spec-
trum, but only with a finite set of energy levels. Let us as-
sume that we generate all the possible configurations of N
identical particles in the valence space made of the first m SP
states. These states are usually named model states �or con-
figurations�. One of the most serious shortcomings of the
valence description of MB systems is the existence of in-
truder states. These configurations, lying inside the energy
window spanned by the model states, involve SP levels that
do not pertain to the valence space. There exists a threshold
energy Emax where these configurations start to appear, and
any sequence including model states beyond this energy is
always incomplete. The great advantage of noninteracting
systems is that the threshold energy can be calculated easily
as Emax=E1

�N−1�+em+1, where E1
�N−1� is the ground state en-

ergy of the system with N−1 particles. Thus, discarding ev-
ery configuration whose energy is greater or equal to Emax we
can generate the exact many-body spectrum up to that en-
ergy. Notice that for interacting systems the problem is far
more complicated.

�ii� We assume that the statistical properties of the SP
spectrum are those of an appropriate matrix ensemble. We
also assume that the eigenvalue sequence is stationary and
that its average density is equal to one. Of course, these
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might be crude assumptions of the model because the statis-
tical properties of low-lying SP energy levels may not be
well described by a RMT approach. Moreover, we ignore
some features that may appear in physical systems, like the
smooth variation of the level density with the energy, the
existence of large energy gaps, energy bands, etc. In this
simple version the results can apply when only the properties
near the Fermi level are of interest or in two-dimensional
problems, like quantum dots, where the particles are trapped
in a certain closure.

�iii� This type of systems �and MB systems in general� are
most often not integrable. According to the widely accepted
criterion of integrability in quantum mechanics �15–19�, NIP
systems have N
d degrees of freedom �d being the spatial
dimensions� and, in general, only the energies of each par-
ticle would be integrals of motion. In spite of their simplicity,
Eqs. �3� and �4� do not define a solvable problem. They give
all the exact eigenvalues and eigenstates of the systems, pro-
vided that we know all the SP energies �ei�. However, these
are not usually known analytically and we must calculate
numerically a large enough sequence of SP energies to per-
form the statistical analysis.

�iv� It is sometimes assumed that in many-body systems a
clear semiclassical picture arises in the MF approximation;
then, the classical limit of the SP states is regular or chaotic
depending on the symmetries of the MF potential. However,
the MB spectrum is not only defined by the MF potential, but
also by the direct product structure of the Hilbert space and
by the fermionic or bosonic character of the particles. More-
over, in quantum mechanics identical particles are truly in-
distinguishable; in particular, we can neither label the differ-
ent particles of the system nor follow their trajectories
because this would entail a position measurement disturbing
deeply the system. As a consequence, it is intrinsically im-
possible to find a classical analog, except for very dilute
systems where the overlap among particle wave packets is
negligible.

III. STATISTICAL ANALYSIS

The task now is to characterize the spectral fluctuations of
noninteracting systems, with N=1,2 , . . . particles occupying
the infinite SP energy levels of a MF. As commented above,
the SP spectra are modeled using random matrix ensembles
with different symmetries, like the Gaussian orthogonal en-
semble �GOE� and the Gaussian unitary ensemble �GUE�.
Using the method explained in the previous section we have
generated in all the cases complete sequences of about M
=106 levels.

A. The MB level density

Prior to the statistical analysis, the spectrum must be
transformed. It is generally accepted that the level density
g�E� can be separated into a smooth part ḡ�E� that defines
the main trend of the level density and a fluctuating part
g̃�E�. The fluctuation amplitudes of the latter are modulated
by ḡ�E�; therefore, to compare the statistical properties of
different systems or different parts of the same spectrum, the

main trend defined by ḡ�E� must be removed. The procedure
by which ḡ�E� is removed, called unfolding, consists in lo-
cally mapping the spectrum into another with mean level
density equal to 1. The actual energy levels Ei are mapped

into new dimensionless levels �i=M̄�Ei�, i=1, . . . ,M. Here
M stands for the dimensionality of the level sequence se-

lected for the analysis, and M̄�E�=�−�
E dE�ḡ�E�� is the

smooth part of the accumulated level density M�E�, which
gives the number of levels up to energy E.

The principal difficulty of the unfolding procedure is the
correct characterization of the mean level density function
ḡ�E�. Several expressions describing the mean level density
of MB systems can be found in the literature �20�. In these
expressions, the residual interactions among particles are
very often ignored, and the existence of an evenly spaced SP
spectrum is assumed, so the formal problem is essentially
combinatorial. Recently, a combination of statistical physics
methods and the semiclassical approximation has been pro-
posed to take into account the contribution of SP level fluc-
tuations �21�. For fermion systems we can cite the well
known formula by Bethe �22�

g�E� =
1

E�48
exp��2�2
FE/3� , �7�

where 
F is the average SP level density at the Fermi level.
The Bethe density diverges when E goes to zero, which of
course is meaningless, and reflects the fact that as the exci-
tation energy becomes low, the level density becomes too
small to apply statistical methods. We can also cite the so
called constant temperature formula �23�

g�E� =
1

T
exp�E − E0

T
� , �8�

which is also obtained by means of very general statistical
arguments. It is used to describe the low-energy level density
of atomic nuclei determining E0 and T in an empirical way to
the experimental data.

Since these expressions are more appropriated either for
systems with a large number of particles and high excitation
energies or for low excitation energies, we shall proceed in a
different way that is better suited for small systems and dif-
ferent energy scales. Actually, the MB level density is de-
fined as

g�E� = �
I

��E − EI� = �
I

�I	��E − Ĥ�	I
 , �9�

and, after inserting Eqs. �3� and �4� into this expression, a
straightforward calculation gives

g�E� = �
I

CI
2�

P

	tp��
ij�I

�ijipj

c ���E − �
ij�I

eij� , �10�

where �i,j
c is the Kronecker delta and pj is a permutation of

1 ,2 , . . . ,N. Removing the restriction that the SP indices must
be ordered �i.e., i1� i2� ¯ � iN�

g�E� =
1

N! �
�ij�N�

�
P

	tp��
j=1

N

�ijipj

c ���E − �
j=1

N

eij� . �11�
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In order to express �11� in terms of 
�E�, we use the
following property:

�
i,j

��E − ei − ej� = 
�E� � 
�E� , �12�

where � stands for the convolution product. Moreover, by
decomposing each permutation into a1 ,a2 , . . . ,aN cycles of
length 1 ,2 , . . . ,N �24�, we obtain

g�E� = �
�ar�

�rar=N

��
r=1

N
	�r+1�ar

r2arar!
����

r=1

N

�
s=1

ar


�E/r�� , �13�

and therefore all the information concerning the level density
of the N-body system is encoded in the SP level density
gSP�E�=
�E�. In particular, for N=2 we get

g�E� =
1

2

�E� � 
�E� +

	

4

�E/2� , �14�

an expression that coincides with that quoted in Ref. �8�, but
within a different context.

Since we assume that the statistical properties of the
single-particle spectrum are given by an appropriate matrix
ensemble, we expect that a statistical average over the en-
semble gives the smooth part of the level density, i.e.,

ḡ�E� = �g�E�
 = �
�ar�

�rar=N

��
r=1

N
	�r+1�ar

r2arar!
����

r=1

N

�
s=1

ar


�E/r�� ,

�15�

where �·
 stands for the statistical average over the ensemble.
This equation involves multidimensional integrals of
�1,2 , . . . ,N�-point correlation functions which become ex-
tremely complex as N increases. Only Poisson-like fluctua-
tions lead to very simple k-point correlation functions for any
value of k.

Therefore, the need for a useful simplification is clearly
seen. Writing the ensemble averages ��q
�xq�
 in terms of
the k-point correlation functions Rk�x1 , . . . ,xk�, and taking
into account that these are positive definite functions, i.e.,
0�Rk�x1 , . . . ,xk��Mk , " xi, a cumbersome but straightfor-
ward calculation makes it possible to obtain a common upper
bound for fermions as well as for boson systems. When E is
large enough

ḡ�E� �
1

N! �p=1

N

�− 1�N−pSN
�p���

k=1

p

MkSp
�k�� Ep−1

�p − 1�!
, �16�

where SN
�p� and Sp

�k� are the Stirling numbers of first and sec-
ond kind, respectively �24�. This upper bound shows that the
MB level density can be bounded by a polynomial of degree
N−1. Moreover, for very small values of N it is possible to
obtain exact expressions of the level density. For instance, if
N=2 and the SP spectrum has GOE spectral fluctuations, we
get

ḡ�E� =
E

2
+

	

4

+
1 + si��E�sin��E� − cos�2�E� − 2�Esi�2�E�

2�2E
,

�17�

where si�x� is the sine integral function �24�.
The dominant part of Eq. �17�, a polynomial of degree 1

�N−1 in the general case of N particles�, comes directly from
the SP smooth level density 
̄�E�. On the other hand, the
contribution of 
̃�E� to the MB level density varies as
O�1/E�, and thus becomes negligible when E�1. A similar
result is obtained when N=3.

For these reasons we expect that the smooth MB level
density ḡ�E� can be approximated by a polynomial of degree

k−1 with k�N. Then, the smooth accumulated density M̄�E�
will be given by a polynomial of degree k�N. Therefore the
unfolding procedure can be performed introducing the mean
cumulated level density

M̄�k,�,E� = �kE
k + �k−1Ek−1 + ¯ + �1E + �0, �18�

and the optimal values �0 are obtained by minimizing the
distance

��k,��2 =
1

M
�
i=1

M

�M�Ei� − M̄�k,�,Ei��2. �19�

In order to see whether the proposed mean cumulated

density M̄�k ,� ,E� is suitable for our problem, we have first
performed the fit inside a fixed energy window with ��

�100, common to all the spectra. Since M̄�k ,� ,E� depends
dramatically on k and E, this is necessary to compare the fits
for systems with different number of particles. Of course the
number of levels lying inside this window increases very
quickly with N: it varies from M �3000 levels when N=2 up
to M �4
106 levels for N=6. In Fig. 1 the behavior of
��k ,�0� as a function of the degree k in Eq. �18� is shown for
systems with different number of fermions moving in a SP
spectrum with GOE spectral fluctuations. In all the cases
��k ,�0� decreases as k increases until a plateau is reached at
k=N; for k�N the value of ��k ,�0� remains essentially con-
stant. Moreover, the minimum increases proportionally to
�M − �N+1� �shown in the upper right panel�, as expected
from statistical considerations �25�. This result supports our
conjecture that N is the optimal degree of the polynomial
�18� and thus we have proceed to fit Eq. �18� to all the
sequences considered in the present work.

Figure 2 displays the comparison of a polynomial density,
a phenomenological Bethe formula g�E�= �a /E�exp��bE�,
and the constant temperature density �8� with the actual den-
sity of three fermions evolving in a SP spectrum with GOE
spectral fluctuations. The low-energy part of the spectrum
has been truncated. We plot the level density functions g�E�
instead of M�E� because the latter grows very fast with the
energy, and it is quite difficult to distinguish its fluctuations
around the mean cumulated level density. It can be seen that
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ḡ�N ,�0 ,E� fits very well the actual level density while the
other forms give incorrect values almost through the whole
energy window. At the spectrum edges they overestimate the
average density while in the middle region they give smaller
values than the polynomial density. Our results for systems
with a larger number of particles show that these discrepan-
cies become smaller as N increases, as expected.

B. The statistical tools

In order to study the spectral fluctuations of the unfolded
spectrum we introduce three convenient statistics.

�i� The nearest neighbor spacing distribution P�s�, well
suited to study short-range spectral correlations �11�, gives
the probability that the distance between two consecutive
levels lies between s and s+ds. For systems with Poisson

statistics P�s�=exp�−s�, whereas for chaotic ones it is given
by the Wigner distributions P�s��s� exp�−��s2�, with �
=1,2, or 4, depending on the symmetries of the Hamiltonian.
The exponent � measures the intensity of the level repulsion
characteristic of chaotic systems.

�ii� The �3 statistic �26�, used to investigate long-range
correlations. This function, averaged over intervals, mea-
sures the deviations of the unfolded spectrum from a truly
equidistant spectrum, i.e., the spectral rigidity. For Wigner-
like spectra, the levels are strongly correlated and ��3�L�

� log L. By contrast, for Poisson spectra the levels are uncor-
related, the spectrum is soft, and ��3�L�
�L.

�iii� The power spectrum of the �n statistic �27�, consid-
ered as a discrete time series. It has been recently shown that
the power spectrum Pk

� of this statistic exhibits neat 1 / f�

FIG. 1. Minimum distance ��k ,�0� between
the cumulated density and the approximation �18�
to the mean cumulated density, as a function of k,
the degree of the polynomial, and N. The upper
right panel shows ��N ,�0� versus M − �N+1�.

FIG. 2. Level density function
�histogram� for a system with N
=3 fermions in a SP spectrum
with GOE fluctuations, together
with the best fits to ḡ�N ,� ,E�
�solid line�, to the phenomeno-
logical Bethe density �dotted line�,
and to the constant temperature
formula �dashed line�.
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power laws, with �=1 for chaotic systems and �=2 for
regular ones �27�.

IV. NUMERICAL RESULTS FOR NON-INTERACTING
FERMION SYSTEMS

The following sections are essentially devoted to gain
some insight into the spectral fluctuation properties of NIP
systems by means of numerical simulations. We consider
separately the simulations for fermion and boson systems.
Here we study the spectral fluctuations of small systems
composed by a few noninteracting and spinless fermions,
while boson systems are studied in the next section. The
relevant difference between these systems is that the Pauli
principle is active only for fermions, and therefore the MF
levels are occupied at most by a single particle.

A. Evolution with the number N of particles

We first deal with the statistical properties of the whole
spectrum. In order to obtain significant results we generate
very long and complete sequences of energy levels corre-
sponding to many-body systems with N=2, . . . ,6 fermions.
Since we expect to obtain different results in the low energy
region, we postpone its study until the next subsection. Using
the procedure explained in Sec. II, we generate sequences of
about one million levels, and afterwards several thousands of
the lower levels are removed to keep exactly one million.
Moreover, in doing so, we can take advantage of the approxi-
mated smooth level density �18� to unfold the truncated spec-
trum.

Since the results for different symmetries and different
numbers of particles are very similar, we only show a few
representative examples.

1. Short-range correlations

The P�s� distribution of two systems with N=2 and 3
particles in a SP spectrum with GOE spectral fluctuations are

compared in Figs. 3 and 4 with the Poisson and Wigner
distributions. It appears that both systems show short-range
spectral fluctuations characteristic of regular systems.

To be more quantitative we can fit the P�s� histograms to
the Brody distribution P�� ,s� �11�, where � is the so-called
Brody parameter. The very interesting feature of this distri-
bution is that it interpolates between the Poisson distribution
��=0� of regular systems and the Wigner distribution ��
=1�, which is a good approximation to the GOE spacing
distribution. Thus, the degree of chaos can be assessed by
how close � is to these limits. Table I displays the values of
the Brody parameter � for several few-body systems, and in
all the cases it is close to 0 with very high precision. This
result proves that the spectrum becomes completely regular
when we add just one particle to the SP system, at least
according to the short-range spectral correlations.

2. Long-range correlations

In order to confirm this result, we try to study the long-
range correlation structure of the spectrum. It is quite cus-
tomary to use the average values of the �3�L� statistic. After
generating the spectra of NIF systems, where the SP spec-
trum exhibits GUE fluctuations, the numerical values of
��3�L�
 were calculated as averages over semioverlapping
intervals of length L covering the whole level sequence �3�.
Figure 5 compares the numerical results for N=2 and 3 with
the theoretical predictions for integrable systems up to L
=200. We see that in both cases ��3�L�
 increases linearly in
perfect agreement with the theoretical predictions for inte-

FIG. 3. P�s� distribution for a noninteracting two-fermion sys-
tem with single-particle spectrum with GOE fluctuations �histo-
gram� compared with the theoretical predictions for Poisson statis-
tics �dashed line� and GOE statistics �dotted line�.

FIG. 4. Same as Fig. 3 for N=3 particles.

TABLE I. Brody parameter values for several noninteracting
fermion systems with N=1 to 6 particles and SP spectrum with
GOE fluctuations. �� is an estimate of the statistical error commit-
ted in the fit.

N 1 2 3 4 5 6

� 0.961 0.0000 0.000 0.00000 0.000 0.0000

�� 0.009 0.0003 0.004 0.00007 0.004 0.0001
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grable systems. Beyond L�200 it is quite difficult to obtain
reliable results for ��3�L�
 �28,29�.

A second way to characterize long-range correlations is to
use the average values �Pk

�
 of the power spectrum of �n. In
this case, the independent variable is the counter k related to
the actual frequency as �k=2�k /M, where M is the total
length of the level sequence. The frequency counter takes on
the values k=1,2 , . . . ,M /2. The �Pk

�
 values are obtained by
means of a double average. First, an “ensemble” average is
obtained using 100 intervals of length L=104 that cover the
whole level sequence; then the logarithmic frequency axis is
divided into equal bins and the power spectrum components
are averaged in each bin. Figure 6 compares �Pk

�
 for the
same previous systems with N=2 and N=3 with the theoret-
ical predictions given in Ref. �31�. Again, the agreement with
the prediction for Poisson statistics is almost perfect. How-
ever, we have found that the average power spectrum bends
down below a very small critical frequency kc. There exists a

one-to-one correspondence between the frequency k and a
characteristic energy scale in the spectrum L, given by L
=M /k; then small frequencies in the �n power spectrum cor-
respond to large values of L. The kc values must be estimated
before the bin average of the power spectrum. When N=2,
the calculated points deviate from theoretical line below kc
�12, corresponding to a critical energy window Lc�800.
Analogously, if N=3 the departure from the theoretical line
is only seen for frequencies below kc�3, and thus Lc
�3000. Finally, for N�3 the critical length Lc�M and
therefore the results are indistinguishable from the theoreti-
cal curve. One important point is that the low-frequency de-
viations from the theoretical predictions appear only when
the SP spectrum exhibits RMT-like fluctuations. If this sta-
tistic is calculated for systems with an integrable MF, the
agreement with the theoretical predictions is excellent, even
at very low frequencies. Therefore, these discrepancies are
most likely a reminiscence of the Wigner-Dyson spectral
fluctuations of the SP spectrum. These results show that NIF

FIG. 5. Average �3�L� values for noninteract-
ing few-fermion systems with N=2 and 3 par-
ticles generated from a single-particle spectrum
with GUE fluctuations �circles�. The numerical
values are compared with the Poisson limit L /15
�solid line�. The GUE curve is not shown because
it is nearly two orders of magnitude smaller than
the calculated values.

FIG. 6. Average Pk
� values for noninteracting

N=2 and 3 fermion systems generated from a
single-particle spectrum with GUE fluctuations
�circles�, compared with the theoretical predic-
tions for GUE �dashed line�, and regular systems
�solid line�.
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systems exhibit long-range correlation characteristic of inte-
grable systems. Nevertheless, for chaotic MF this assessment
is only true up to a certain critical energy window Lc. A more
detailed analysis of the dependence of Lc on N and E is left
for the next subsection.

B. Evolution with the energy

The statistical properties of the low-energy region were
not considered in the previous analysis. As was argued in the
Introduction, we expect a different behavior in this case since
Bloch’s argument may fail for the low-lying levels of the MB
spectrum. It is not clear whether the SP levels defining two
near and low-lying many-body configurations come from
different regions of the SP spectrum, so they can not be
considered as uncorrelated. Indeed, we can find a different
behavior for the very low-lying levels as it is shown in the
following example. Given a SP spectrum with GOE-like
fluctuations we consider the ground-state and the first excited
energy levels of the two-body spectrum. The ground-state
configuration consist of one particle occupying the first SP
level and the other the second SP level. Analogously, the first
and the third SP levels are occupied in the first excited con-
figuration. Then, the energy spacing between these two con-
secutive levels of the two-body spectrum S1 is equal to the
second energy spacing s2 of the SP spectrum. Thus, if we
calculate the nearest neighbor spacing distribution by aver-
aging S1 over different SP spectra we would obtain a Wigner
distribution.

Before going on with the statistical analysis, it is worth
commenting briefly on the unfolding procedure of the low
energy spectrum. As it was already pointed out, the polyno-
mial approximation �18� is appropriated for higher energies.
For this reason we have calculated the smooth cumulated

density M̄�E� by means of an ensemble average. This was
obtained using as many as 500 SP spectra.

As usual, we start considering the short-range correla-
tions. To this purpose we have studied the evolution of the
P�s� distribution with the threshold energy Emax for a system
with N=2 fermions moving freely in a GOE MF. The shape
of P�s� is compared in Fig. 7 with the theoretical predictions
for integrable and chaotic spectra. The figure is separated
into four different panels according to the values of Emax. It
is clear that P�s� evolves smoothly from the Wigner distri-
bution to the Poisson distribution as the energy increases.
While at very low energies �Emax=4� P�s� does coincide with
the former, it shows an intermediate behavior when we move
up to Emax=10, and only near Emax=40 becomes almost in-
distinguishable from the Poisson distribution. Even in this
case, there exist small deviations that disappear when the
threshold energy increases up to Emax=160. At this point we
can state that as far as short-range correlations are concerned,
Bloch’s argument fails at low energies.

It is also worthwhile to comment on the actual shape of
this intermediate distributions for the P�s�. The value of the
P�s� when s=0 is different from 0 in the distributions going
from Wigner to Poisson as can be clearly seen in the second
panel of Fig. 7. This kind of behavior appears when part of
the neighboring levels are correlated and present normal

level repulsion, and part of them do not repel each other and
follow Poisson statistics. It is very similar to the behavior in
mixed systems when part of the phase space is chaotic and
part is regular and they are isolated from each other �30�. On
the contrary, it is very different from the usual behavior ap-
pearing in many-body systems where the probability of find-
ing two consecutive levels degenerated is zero, when we turn
on the interaction smoothly.

In order to complete the study of the evolution of the
spectral fluctuations, we shall characterize the behavior of
�Pk

�
 at different excitation energies in the MB spectrum.
When the low energy domain is excluded, the average power
spectrum of �n is in perfect agreement with the prediction for
Poisson statistics except at small frequencies. As we have
seen in Fig. 6 this frequency is typically kc� �1,10� for sys-
tems with N=2,3 particles. Thus, the spectral fluctuations of
these systems deviate from those of integrable systems for
energy windows of length Lc� �1000,10 000�. As for the
shape of P�s�, we expect the critical value Lc to depend on
the energy. To get an idea of how Lc varies with the energy,
we have computed the power spectrum of �n for different
energy intervals �E−E /10,E+E /10� and several numbers of
particles. The evolution can be followed in the three panels
of Fig. 8 corresponding to E=1000, 8000, and 64 000. In
each panel we compare the results for N=2, 3, and 4 with the
theoretical curve for integrable systems; the latter as well as
the numerical results are displaced in the vertical axes to
avoid overlapping. There are two features that the reader has
probably noticed already. The sequences of �Pk

�
 values are
longer as the energy increases because the number of energy
levels involved increases with E very quickly. On one side,
the length of the energy interval we use to calculate the
power spectrum is proportional to E, and on the other the
level density also increases with the energy. There is also a
difference between Figs. 8 and 6. In order to make clearer
the dependence of Lc with the energy window we have plot-

FIG. 7. Evolution of the P�s� distribution with the energy
threshold Emax for a two-body system. Using four different energies
Emax=4 �upper left panel�, 10 �upper right panel�, 40 �lower left
panel�, and 160 �lower right panel�, the actual distribution �histo-
gram� is compared with the Wigner �dashed line� and with the Pois-
son distribution �dotted line�.
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ted �Pk
�
 as a function of L=M /k. It is clearly seen that for a

given energy E, Lc increases with the number of particles;
and for a fixed number of particles N, Lc increases with
energy. Table II gives the Lc estimates for N=2 and 4.

Unlike the behavior of P�s� at very low energies, the de-
viation of �Pk

�
 from the Poisson statistics prediction for L
�Lc is not a signature of an intermediate regime. For a re-
cent study of the behavior of the �n in the order to chaos
transition see Refs. �32,33�. On the contrary, this sharp
change of slope of the power spectrum seems to be a remi-
niscence of the GOE-like fluctuations of the SP spectrum.

V. NUMERICAL RESULTS FOR NONINTERACTING
BOSON SYSTEMS

The analysis of the preceding section is repeated for sys-
tems of N bosons without interaction. Since the exclusion
principle does not apply to boson systems, the sequence I
= �i1 , i2 , . . . , iN� may contain sets of equal indices, i.e., SP
levels can have occupancies greater than one; actually one
level may be occupied by N particles. This property can lead
to a different behavior of spectral fluctuations when N in-
creases and m remains constant. Nevertheless, for infinite
systems, where m→� for N fixed we do not expect many
differences with regard to fermion systems. To be concise we
only report the results for N=2; the spectral fluctuations of
systems with N=3, 4, 5 and 6 particles show a very similar
behavior.

The number m of SP levels is taken as to generate com-
plete sequences slightly larger than one million levels; then
we truncate the low-energy spectrum to obtain sequences
with one million levels exactly. The unfolding of these se-
quences is performed by using the polynomial density �18�.

The P�s� distribution of a system with N=2 identical
bosons moving freely in a SP spectrum with GOE spectral
fluctuations is compared in Fig. 9 with the Poisson and
Wigner distributions. It is clearly seen that the short-range
spectral fluctuations of this system are those of a regular
system. A least-squares fit of the P�s� histograms to the
Brody distribution P�� ,s� �11�, gives a repulsion parameter
�=0.0000±0.0003. Similarly to the case of fermion systems,
adding just a particle to the SP system the spectrum becomes
completely regular. The P�s� distribution for systems with
N=3, 4, 5, and 6 bosons also follow very precisely the Pois-
son curve.

The study of the long-range correlation structure of the
spectrum corroborates the integrable character of the N=2
system. According to Fig. 10 the average values ��3�L�
 �cal-
culated by using the algorithm of Ref. �3�� increase almost
linearly in agreement with the theoretical predictions for in-
tegrable systems. Only near the upper limit of the figure �L
=200�, the calculated values seem to fall slightly below the
theoretical line suggesting the onset of a �3�L� saturation.
The existence of such a saturation is studied by means of the
�n statistic. The whole spectrum is divided in 100 nonover-
lapping sequences of length M =104; then the power spec-
trum of the �n statistic is calculated for each sequence sepa-
rately, and an “ensemble” average is performed by using the
100 sequences. In order to reduce even more the fluctuations

FIG. 8. �Pk
�
 behavior for noninteracting N=2 �circles�, 3 �tri-

angles�, and 4 �squares� fermion systems at different energies, com-
pared with the theoretical predictions for regular systems �solid
line�. At each energy, the numerical values and the theoretical line
are appropriately displaced to avoid overlapping.

TABLE II. Approximated Lc values for systems with N=2 and 4
particles as a function of the energy window centroid E.

E

Lc

N=2 N=4

1000 60 200

8000 130 1200

64000 400 5000

SPECTRAL STATISTICS IN NONINTERACTING MANY-¼ PHYSICAL REVIEW E 73, 036202 �2006�

036202-9



and clarify the main trend we divide the logarithmic fre-
quency axis into equal bins and average the power spectrum
components in each bin. Figure 11 shows that �Pk

�
 behaves
consistently. It is clearly observed that there exists a critical
frequency kc�17; for k�kc the power spectrum behaves as
�Pk

�
�1/k2 in agreement with the theoretical predictions
given in Ref. �31� for integrable systems, while below kc it
behaves as �Pk

�
�1/k, which is the expected behavior of a
chaotic system. The frequency kc corresponds to a critical
energy window Lc=M /kc�600. Similar results are obtained
when N�2, but the critical frequency decreases very quickly
with N. As a few examples, we have kc=3,2 for N=3 and 4,
respectively.

We now study the low-energy region of the spectrum that
was excluded before. We expect a different behavior in this
region since the arguments that were applied to fermion sys-
tems are also valid for bosons. To unfold the spectra in this

region, where the polynomial density is not valid, we use an
ensemble average with 500 different GOE SP spectra.

The evolution of the P�s� distribution with the threshold
energy Emax has been studied for a system with N=2 bosons
in a GOE MF. Figure 12 compares the calculated shape of
P�s� with the theoretical curves for integrable and chaotic
spectra. The figure, separated in four different panels accord-
ing to the values of Emax, shows that this distribution evolves
smoothly from the Wigner to the Poisson distribution as the
excitation energy increases. For Emax=4, P�s� does coincide
with the Wigner distribution, it shows an intermediate behav-
ior when we move up to Emax=10, and only near Emax=40
becomes almost indistinguishable from the Poisson distribu-
tion. Even for these energies, there exist small deviations that
disappear when the threshold energy moves up to Emax

=160. Similarly to what happens for fermion systems, we

FIG. 9. P�s� distribution for a two-boson sys-
tem without interaction and a single-particle
spectrum with GOE fluctuations �histogram�
compared with the theoretical predictions for
Poisson statistics �dashed line� and GOE statistics
�dotted line�.

FIG. 10. Average �3�L� values for noninter-
acting boson systems with N=2 particles, gener-
ated from a single-particle spectrum with GOE
fluctuations �circles�. The numerical values are
compared with the Poisson limit L /15 �solid
line�. The GOE curve is not shown because it is
nearly two orders of magnitude smaller than the
calculated values.

MUÑOZ et al. PHYSICAL REVIEW E 73, 036202 �2006�

036202-10



can state that short-range correlations show that Bloch’s ar-
gument fails at low energies.

In order to complete the study of the evolution of the
spectral fluctuations, we study the behavior of �Pk

�
 at differ-
ent excitation energies. We know already that except at small
frequencies the average power spectrum of �n is in perfect
agreement with the prediction of Poisson statistics, when the
low energy domain is excluded. As we have seen in Fig. 6
these frequencies are typically k�kc� �1,10� for systems
with a small number of particles. Thus, the spectral fluctua-
tions of these systems deviate from those of integrable sys-
tems for energy windows of length Lc� �1000,10 000�. Ac-
cordingly to the P�s� results, we expect the critical value Lc

to depend on the energy. Therefore, we have computed the
power spectrum of �n for different energy intervals �E

−E /10,E+E /10� and several numbers of particles. Figure 8
displays the results for N=2 and E=1000, E=8000 and E
=64 000. Figure 13 compares the numerical results with the
theoretical curve for integrable systems; this one as well as
the numerical results are displaced in the vertical axes to
avoid overlapping. It is clearly seen that Lc increases with
energy. The general result is that for a given energy E, Lc
increases with the number of particles; and for a fixed num-
ber of particles N, Lc increases with energy. Table III gives
the Lc estimates for N=2 and 4.

VI. AN ANALYTICAL PROOF FOR N=2

In order to obtain some analytical support for this result,
we have tried to calculate the two-point cluster functions
Y2

�N��E1 ,E2� of the system with N particles. However, since
this calculation requires the knowledge of the 2N-point cor-
relation functions for the SP spectrum, it becomes very cum-
bersome and involved. For this reason we have restricted

FIG. 11. Average Pk
� values for noninteracting

N=2 boson systems generated from a single-
particle spectrum with GOE fluctuations �circles�,
compared with the theoretical predictions for
GOE �dashed line�, and regular systems �solid
line�.

FIG. 12. Evolution of the P�s� distribution with the energy
threshold Emax for a two-body system. Using four different energies
Emax=4 �upper left panel�, 10 �upper right panel�, 40 �lower left
panel�, and 160 �lower right panel�, the actual distribution �histo-
gram� is compared with the Wigner �dashed line� and with the Pois-
son distribution �dotted line�.

FIG. 13. �Pk
�
 behavior for noninteracting N=2 boson systems

�circles� compared with the theoretical predictions for regular sys-
tems �solid line�.
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ourselves to systems with N=2 particles. In this case the
two-point cluster function is given by

Y2
�2��E1,E2� = 1 −

�g�2��E1�g�2��E2�

�g�2��E1�
�g�2��E2�


+
��E1 − E2�
�g�2��E1�


,

�20�

where g�2��E� is the two-body level density. In what follows
we shall assume that E1 ,E2�1 and E1�E2. With this pro-
viso the average level density can be approximated by
�g�2��E�
=E /2. We also assume the energies E1 and E2 to be
close, that is, 0� 	E1−E2	�E1+E2, since in the opposite
case the energy levels are supposed to be uncorrelated when
they are far enough. Inserting Eq. �14� and expressing
�
�E1�
�E2�¯
�Ev�
 in terms of k-point correlation func-
tions of the SP spectrum Rk�E1 ,E2 , . . . ,Ek� �k�v�, we arrive
at

Y2
�2��E1,E2�

= 1 −
1

E1E2
��

0

E1

d��
0

E2

d� R4��,E1 − �,�,E2 − ��

+ 2�
0

E1

d� R3��,E1 − �,E2 − ��

+ 2�
0

E1

d� R3��,E1 − �,� − E1 + E2�

+
1

4
R2�E2/2,E1/2�� �21�

for fermion systems, and

Y2
�2��E1,E2�

= 1 −
1

E1E2
��

0

E1

d��
0

E2

d� R4��,E1 − �,�,E2 − ��

+ 2�
0

E1

d� R3��,E1 − �,E2 − ��

+ 2�
0

E1

d� R3��,E1 − �,� − E1 + E2�

+ �
0

E2

d� R3�E1/2,�,E2 − ��

+ �
0

E1

d� R3�E2/2,�,E1 − ��

+ 2R2�E2/2,E1 − E2/2� + 2R2�E1/2,E2 − E1/2�

+
3

4
R2�E2/2,E1/2�� �22�

for boson systems. Now, taking into account that the k-point
correlation functions are bounded, it is possible to drop all
except the two first terms in these equations, as far as we are
interested in the limit E1 ,E2�1. In this case the remaining
terms are of order O�1/E�. Thus

Y2
�2��E1,E2�

� 1 −
1

E1E2
�

0

E1

d��
0

E2

d� R4��,E1 − �,�,E2 − �� .

�23�

The integrand R4�E1 ,E2 ,E3 ,E4� can be written in terms of
the level cluster functions Yk with k�4 as

R4�E1,E2,E3,E4� = − Y4�E1,E2,E3,E4�

+ �Y3�E1,E2,E3�Y1�E4� + 3 perms�

− �Y2�E1,E2�Y1�E3�Y1�E4� + 5 perms�

+ Y1�E1�Y1�E2�Y1�E3�Y1�E4� , �24�

giving

Y2
�2��E1,E2� � 1 +

1

E1E2
�

0

E1

d��
0

E2

d��Y4��,E1 − �,�,E2

− �� − Y3�E1 − �,�,E2 − �� − Y3��,�,E2 − ��

− Y3��,E1 − �,E2 − �� − Y3��,E1 − �,��

− Y2�2� − E1�Y2�2� − E2� − Y2�� − ��Y2�E1

− E2 + � − �� − Y2�E1 − � − ��Y2�E2 − � − ��

+ Y2��,E1 − �� + Y2��,�� + Y2��,E2 − ��

+ Y2�E1 − �,�� + Y2�E1 − �,E2 − ��

+ Y2��,E2 − �� − 1� �25�

and using the properties of these functions �see the Appen-
dix� it is easy to show that

Y2
�2��E1,E2� � 0, 0 � 	E1 − E2	 � E1 + E2. �26�

The levels of integrable systems behave as noncorrelated
random variables, as shown by Berry and Tabor �2�, and
therefore Yk=0 for any value of k. According to Eq. �26�
Y2

�2�=0, suggesting that two-body systems are integrable,
provided that the energy of the levels is high enough.

VII. CONCLUSIONS

In summary, we have analyzed the energy spectral fluc-
tuations of identical particles moving independently in a cha-
otic mean field. To this purpose we have used matrix en-

TABLE III. Approximated Lc values for boson systems with
N=2 and 4 particles as a function of the energy window centroid E.

E

Lc

N=2 N=4

1000 40 200

8000 130 800

64000 200 3200
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sembles with different statistical properties to model the
single-particle energies; then large and complete sequences
of energy levels have been generated for boson and fermion
systems with different number of particles. The statistical
analysis has been performed by means of the nearest neigh-
bor spacing distribution P�s�, the �3�L�, and the �n statistics.

Although there is no extended numerical experience or a
rigorous derivation, it is usually assumed that these systems
always exhibit Poisson fluctuations. The reason has to be
found in a heuristic argument introduced by Bloch several
decades ago. It assumes that two successive energy levels of
the many-body spectrum are sums of energies of very differ-
ent parts of the SP spectrum and therefore their variations
will not be correlated. Bloch’s argument is obvious if the MF
is integrable and all its eigenvalues behave as uncorrelated
random variables. However, it is not clear whether this as-
sumption is valid in the low energy domain when the MF is
chaotic. For this reason, we have only considered SP spectra
with RMT-like fluctuations emphasizing the evolution of the
spectral fluctuations of the MB system with the excitation
energy.

When the low energy domain of the spectrum is not in-
cluded in the analysis, the spectral fluctuations of NIP sys-
tems are those of generic integrable systems, regardless of
the number of particles. Therefore, there is a sharp transition
with the number of particles N; even if the SP spectrum is
chaotic, the N=2 system already behaves as an integrable
system. Only long-range correlations show certain reminis-
cences of the MF fluctuations at very large energy scales.

On the contrary, our analysis shows that NIP systems do
not obey the Poisson statistics at low energy. With regard to
short-range correlations, P�s� evolves smoothly from the
Wigner distribution to the Poisson distribution as the energy
increases. Using the �n statistic, we have also found that at
each energy there exists a critical energy scale Lc. Beyond
this scale the long-range correlation structure of the spectrum
deviates from the Poisson predictions. Moreover, for a given
energy E, Lc increases with the number of particles; and for
a fixed number of particles N, Lc increases with energy.

Another important result is that the spectral fluctuations of
fermion and boson systems are very similar, at least for these
systems where the number of SP levels is much larger than
the number of particles.

These results are consistent with the theoretical prediction
for the two-level cluster function for N=2. We have shown
that Y2

�2��E1 ,E2� goes to zero when the energy is high
enough.
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APPENDIX

Here we derive explicit expressions or obtain bounds for
the four types of integrals appearing in Eq. �25�. The first is

I1 =
1

E1E2
�

0

E1

d��
0

E2

d� Y4��,E1 − �,�,E2 − �� . �A1�

Here we use the fact that the two-point cluster functions go
quickly to zero when their arguments increase, that is, the
arguments should be sufficiently small in order to have sig-
nificant contributions to the integral,

	� − �	 � � , 	E1 − E2 + � − �	 � 	� − �	 � � ,

	E1 − � − �	 � � , 	E2 − � − �	 � � ,

	E1 − 2�	 � � , 	E2 − 2�	 � � , �A2�

where � is a sufficiently small amount of energy ��
�E1 ,E2� and we have used the fact that E1 and E2 are close
enough �	E1−E2	���. Now we can write

I1 �
1

E1E2
�

E1/2−�/2

E1/2+�/2

d��
E2/2−�/2

E2/2+�/2

d� Y4��,E1 − �,�,E2 − �� .

�A3�

Taking into account the property of the k-level cluster func-
tions 	Yk�E1 ,E2 , . . . ,Ek�	�k! we have

I1 �
1

E1E2
�

E1/2−�/2

E1/2+�/2

d��
E2/2−�/2

E2/2+�/2

d�	Y4��,E1 − �,�,E2 − ��	

� 3!
�2

E1E2
. �A4�

The second integral is

I2 =
1

E1E2
�

0

E1

d��
0

E2

d� Y3�E1 − �,�,E2 − �� . �A5�

Now, using that

Y3�E1 − �,�,E2 − �� = Y3�0,E1 − � − �,E2 − 2�� �A6�

and the change of variables �=E2−2� and �=E1−�−� we
get

I2 =
1

2E1E2
�

−E2

E2

d��
�/2−E2/2

E1−E2/2+�/2

d� Y3�0,�,�� , �A7�

and the domain of integration here approaches R2 as E1 and
E2 grow. Thus, making use of the relation between consecu-
tive Yk functions valid for the three classical ensembles and
their interpolations �see Ref. �34��

�
−�

�

Yn�x1, . . . ,xn�dxn = �n − 1�Yn−1�x1, . . . ,xn−1� �A8�

we arrive at

I2 �
1

E1E2
. �A9�

The third type is
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I3 =
1

E1E2
�

0

E1

d��
0

E2

d� Y2�2� − E1�Y2�2� − E2� .

�A10�

Using the change of variables �=2�−E1 and �=2�−E2

I3 =
1

4E1E2
�

−E1

E1

d��
−E2

E2

d� Y2���Y2���

=
1

4E1E2
�1 + O� 1

E1
���1 + O� 1

E2
�� , �A11�

where in the last equation we have made use of the known
integrals of the two-point cluster functions of the random
matrix ensembles �26�.

The fourth integral is

I4 =
1

E1E2
�

0

E1

d��
0

E2

d� Y2�2� − E1�

=
1

E1
�

0

E1

d� Y2�2� − E1� , �A12�

and using the change of variables �=2�−E1

I4 =
1

2E1
�

−E1

E1

Y2���d� =
1

E1
�

0

E1

Y2���d�

=
1

E1
�1

2
−

1

��2E1
+ O� 1

E1
2�� , �A13�

where � is the repulsion parameter. As we can see, all these
four integrals go to zero in the high-energy limit.
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